
Insecure Deserialization
(with examples in Python)

m3ssap0

Meethack (Torino), 2021-04-27

1

Serialization and Deserialization (1/2)

Serialization is the process of turning some object
into a data format that can be restored later. People
often serialize objects in order to save them to
storage, or to send as part of communications.

Deserialization is the reverse of that process, taking
data structured from some format, and rebuilding it
into an object. Today, the most popular data format
for serializing data is JSON. Before that, it was XML.

2

Serialization and Deserialization (2/2)

3

Source: https://portswigger.net/web-security/deserialization

Where are Serialization/Deserialization used?

Serialization/Deserialization may be used in
applications for:

• remote- and inter-process communication
(RPC/IPC);

• wire protocols, web services, message
brokers;

• caching/persistence;

• databases, cache servers, file systems;

• HTTP cookies, HTML form parameters, API
authentication tokens.

4

OWASP Top 10: A8 - Insecure Deserialization (1/2)

5

Unfortunately, the features of these
deserialization mechanisms can be
repurposed for malicious effect when
operating on untrusted data.

Attacks against deserializers have been
found to allow denial-of-service, access
control and remote code execution (RCE)
attacks.

OWASP Top 10: A8 - Insecure Deserialization (2/2)

6

Applications and APIs will be vulnerable if they deserialize hostile or
tampered objects supplied by an attacker.

This can result in two primary types of attacks:

1. object and data structure related attacks where the attacker modifies
application logic or achieves arbitrary remote code execution if there are
classes available to the application that can change behavior during or
after deserialization;

2. typical data tampering attacks such as access-control-related attacks
where existing data structures are used but the content is changed.

Challenge

7

challenge-0.py

Python Pickle (1/4)

8

The pickle module implements binary
protocols for serializing and de-serializing
a Python object structure.

• pickle.dumps(obj, …)
Return the pickled representation of the
object obj as a bytes object, instead of
writing it to a file.

• pickle.loads(data,)
Return the reconstituted object hierarchy of
the pickled representation data of an object.
data must be a bytes-like object.

Source: https://docs.python.org/3/library/pickle.html

pickletools.genops(pickle) Provides an iterator over all of the opcodes in a pickle, returning a sequence of (opcode, arg,
pos) triples. opcode is an instance of an OpcodeInfo class; arg is the decoded value, as a Python object, of the opcode’s argument; pos is
the position at which this opcode is located. pickle can be a string or a file-like object.
Source: https://docs.python.org/3/library/pickletools.html

Python Pickle (2/4)

9

Python Pickle (3/4)

10

Python Pickle (4/4)

11

Challenge

12

challenge-1.py

Looking for RCE

13

Obviously the command is executed
before serialization, so the RCE is not

possible just putting os.system
somewhere!

^_^”

__reduce__ for the win!

14

Pickle allows different objects to declare how they should be pickled using
the __reduce__ method.

Whenever an object is pickled, the __reduce__ method defined by it gets
called. This method returns either a string, which may represent the name of
a Python global, or a tuple describing how to reconstruct this object when
unpickling.

When a tuple is returned, it must be between two and six items long. The
first two of them are:

1. a callable object that will be called to create the initial version of the
object;

2. a tuple of arguments for the callable object. An empty tuple must be
given if the callable does not accept any argument.

Exploit example with __reduce__

15

Challenge

16

challenge-2.py

Python Pickle internals

17

Important structures:

• stack, a list to store temporary
data;

• memo, a dict to store
information when pickling;

• metastack, a list to store stack;

• dispatch, OPCODE handler dict.

Important opcodes:
MARK = b'(' # push special markobject on stack

STOP = b'.' # every pickle ends with STOP

INT = b'I' # push integer or bool; decimal string argument

LONG = b'L' # push long; decimal string argument

REDUCE = b'R' # apply callable to argtuple, both on stack

STRING = b'S' # push string; NL-terminated string argument

UNICODE = b'V' # push Unicode string; raw-unicode-escaped'd argument

BINUNICODE = b'X' # " " " ; counted UTF-8 string argument

BUILD = b'b' # call __setstate__ or __dict__.update()

GLOBAL = b'c' # push self.find_class(modname, name); 2 string args

DICT = b'd' # build a dict from stack items

EMPTY_DICT = b'}' # push empty dict

INST = b'i' # build & push class instance

LIST = b'l' # build list from topmost stack items

OBJ = b'o' # build & push class instance

Source: https://github.com/python/cpython/blob/master/Lib/pickle.py#L107

Analysis of __reduce__ exploit (1/10)

18

PROTO Protocol version indicator
Byte: b'\x80'
Stack: []
Metastack .: []
Memo: {}

Analysis of __reduce__ exploit (2/10)

19

GLOBAL Push a global object on the stack
Byte: b'c'
Stack: []
Metastack .: []
Memo: {}

Analysis of __reduce__ exploit (3/10)

20

BINPUT Store the stack top into the memo without popping it
Byte: b'q'
Stack: [<built-in function system>]
Metastack .: []
Memo: {}

Analysis of __reduce__ exploit (4/10)

21

BINUNICODE Push a Python Unicode string object
Byte: b'X'
Stack: [<built-in function system>]
Metastack .: []
Memo: {0: <built-in function system>}

Analysis of __reduce__ exploit (5/10)

22

BINPUT Store the stack top into the memo without popping it
Byte: b'q'
Stack: [<built-in function system>, 'whoami']
Metastack .: []
Memo: {0: <built-in function system>}

Analysis of __reduce__ exploit (6/10)

23

TUPLE1 Build a one-tuple out of the topmost item on the stack
Byte: b'\x85'
Stack: [<built-in function system>, 'whoami']
Metastack .: []
Memo: {0: <built-in function system>, 1: 'whoami'}

Analysis of __reduce__ exploit (7/10)

24

BINPUT Store the stack top into the memo without popping it
Byte: b'q'
Stack: [<built-in function system>, ('whoami',)]
Metastack .: []
Memo: {0: <built-in function system>, 1: 'whoami'}

Analysis of __reduce__ exploit (8/10)

25

REDUCE Push an object built from a callable and an argument tuple
Byte: b'R'
Stack: [<built-in function system>, ('whoami',)]
Metastack .: []
Memo: {0: <built-in function system>, 1: 'whoami',

2: ('whoami',)}

Analysis of __reduce__ exploit (9/10)

26

BINPUT Store the stack top into the memo without popping it
Byte: b'q'
Stack: [0]
Metastack .: []
Memo: {0: <built-in function system>, 1: 'whoami',

2: ('whoami',)}

Command
executed!

Analysis of __reduce__ exploit (10/10)

27

STOP Stop the unpickling machine
Byte: b'.'
Stack: [0]
Metastack .: []
Memo: {0: <built-in function system>, 1: 'whoami',

2: ('whoami',), 3: 0}

Exploit example without __reduce__ and OS cmds

28

Our toolbox:

• we can’t use OS commands, but we are
under a Python ecosystem;

• INST opcode (i.e. b'i') builds and pushes
a class instance;

• open is the Python function to open a file.

Problem: open returns a file pointer, not the
file content; maybe we need a…

Gadget

29

We need a gadget able to be chained after
open:

• file pointer as input;

• string with file content as output.

Exploit example without __reduce__ and OS cmds

30The payload is equivalent to: email.message_from_file(__builtins__.open(filename))

Markobjects are used by other opcodes to identify a
region of the stack containing a variable number of

objects for them to work on.

filename length and filename string that will
be used as parameter of open function. The

filename string is pushed on the stack.

The open function is executed reading parameters, i.e.
filename, from the stack till the first markobject. The result is

pushed on the stack.

The email.message_from_file function is
executed reading parameters, i.e. the file pointer,
from the stack till the first markobject. The result

is pushed on the stack.

How to prevent Insecure Deserialization

31

The only safe architectural pattern is not to accept serialized objects from untrusted
sources or to use serialization mediums that only permit primitive data types. If that is not
possible, consider one of more of the following:

1. implementing integrity checks such as digital signatures on any serialized objects to
prevent hostile object creation or data tampering;

2. enforcing strict type constraints during deserialization before object creation as the
code typically expects a definable set of classes. Bypasses to this technique have been
demonstrated, so reliance solely on this is not advisable!

3. isolating and running code that deserializes in low privilege environments when
possible;

4. log deserialization exceptions and failures, such as where the incoming type is not the
expected type, or the deserialization throws exceptions;

5. restricting or monitoring incoming and outgoing network connectivity from containers
or servers that deserialize;

6. monitoring deserialization, alerting if a user deserializes constantly.

Lessons learned

32

1. Insecure Deserialization is a “bad thing”!

2. Python Pickle is not secure.

3. When you apply a fix/mitigation, always check if it could be bypassed
somehow.

4. Even if you are the “web guy”, you could face “low level” stuff, so be nice
with “binary guys” and learn from them.

References

33

1. https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

2. https://owasp.org/www-project-top-ten/2017/A8_2017-Insecure_Deserialization

3. https://portswigger.net/web-security/deserialization

4. https://docs.python.org/3/library/pickle.html

5. https://docs.python.org/3/library/pickletools.html

6. https://www.synopsys.com/blogs/software-security/python-pickling/

7. https://docs.python.org/3/library/pickle.html#object.__reduce__

8. https://hackmd.io/@2KUYNtTcQ7WRyTsBT7oePg/BycZwjKNX#/

9. https://github.com/python/cpython/blob/master/Lib/pickle.py#L107

10. https://github.com/python/cpython/blob/master/Lib/pickletools.py

11. https://docs.python.org/3/library/email.parser.html#email.message_from_file

